If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+101x-42=0
a = 1; b = 101; c = -42;
Δ = b2-4ac
Δ = 1012-4·1·(-42)
Δ = 10369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(101)-\sqrt{10369}}{2*1}=\frac{-101-\sqrt{10369}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(101)+\sqrt{10369}}{2*1}=\frac{-101+\sqrt{10369}}{2} $
| 2^2x=66 | | (x-20)+(x-40)+(x/2-10)=180 | | x=0,2x-1,6 | | y+1.458*2.5=0 | | 2x/3+5=-7 | | 4x+4Y=806x+3Y=90 | | s/6=5=11 | | 2q/3=6 | | y=2,5-4,2 | | 4(f+8)-7=37 | | x/5-1/30x=-1/6 | | -6×y=y+21 | | 21-4x=6+x | | (3-2x)(5x+7)=0 | | 5x²-10x+2=7x-4 | | 5n^2-405n=0 | | 1.6=y | | 8e-3=6e+5 | | 23x^2-80x-48=0 | | y=-3^2+48 | | (-10+5z)(-8z-10)=0 | | 3a+5=a+1 | | C=5h-2h=11 | | x^2-|x|=12 | | 9q-6=3q | | (2y)-2)÷(3y)-11)=2 | | 2y-2=3y-11×2 | | 14-39=1/4(12x+64) | | 14x-39=1/4(12x+64) | | 2z÷3=6 | | x^2+32x+216=0 | | 1/6y-6=-16 |